With outbreaks of infectious diseases making headlines around the world, scientists are under pressure to understand the drivers that influence the transmission of pathogens in order to better predict and control disease outbreaks.

A new research study led by Professor Kathleen Alexander of the College of Natural Resources and Environment explores the ways that landscapes can influence animal behavior, fostering dynamics that either encourage or limit the spread of infectious diseases.

By observing banded mongoose populations across a range of environments in Botswana, researchers were able to gain insight into the manner in which land type and animal behavior interact to influence the spread of a novel tuberculosis pathogen that is transmitted through olfactory communication behaviors.

The study, published in the journal Frontiers in Ecology and Evolution, was funded with an award from the National Science Foundation’s Evolution and Ecology of Infectious Diseases program.

“Banded mongoose use scent marking to communicate information to other individuals, a central fitness behavior in this and many other species,” explained Alexander, faculty member in the Department of Fish and Wildlife Conservation and an affiliate of the Fralin Life Sciences Institute. “Scent marks are deposited into the environment and contain odor signals that convey information from one mongoose to another.”

“The novel tuberculosis pathogen we’ve discovered has essentially hijacked mongoose communication pathways: as they communicate information with other mongoose, they can also transmit the tuberculosis pathogen,” she continued.

Read more at Virginia Tech