A novel class of antimalarial compounds that can effectively kill malaria parasites has been developed by Australian and US researchers.

In preclinical testing, the compounds were effective against different species of malaria parasites, including the deadly Plasmodium falciparum, and at multiple stages of the parasite lifecycle. The compounds target a previously unexplored parasite pathway and could overcome existing issues of parasite drug resistance, an ongoing and increasingly urgent problem.

The researchers hope that drugs based on these early compounds will soon enter phase 1 clinical trials.

The research, a collaboration between the Walter and Eliza Hall Institute and global pharmaceutical company MSD, was published in Cell Host & Microbe.

Exciting new development

Professor Alan Cowman, an international malaria expert and deputy director at the Walter and Eliza Hall Institute, led the Australian research team, alongside MSD scientist and US team lead Dr David Olsen.

“This is an exciting new class of antimalarial compounds that could fill a critical and widening gap in our efforts to control and eliminate malaria,” Professor Cowman said.

“In preclinical testing, the lead compound WM382 inhibited growth of the malaria parasite in the host and prevented transmission back to the mosquito. These results indicate that this class of compounds is very promising as a potent new treatment for malaria. We hope that drugs based on these compounds will soon progress to human phase I clinical trials.”

Read more at Walter and Eliza Hall Institute