In a recent paper published in Nature Climate Change, an international group of researchers applied a novel approach that combined Earth observations from both satellite and in-situ records to overcome their individual weaknesses and exploit their respective strengths. They first built a model of important energy exchange processes between the surface and the atmosphere using a global network of in-situ observation for three different types of forest and three non-forest vegetation types typically associated with farming and grazing. They then ran the models globally with local environmental information obtained from various satellite and other earth observation systems. This allowed them to estimate the surface temperature response when switching from one vegetation type to another under truly average – or “all-sky” — local environmental conditions.

The authors found, as expected, that forests often contribute to an annual cooling of the surface in temperate and tropical regions, and an annual warming in northern high latitude regions. However, what they did not expect to find was that the annual cooling found in the mid- and low-latitudes was nearly as strong as previous estimates based only on “clear-sky” measurements, while the warming in northerly latitudes was much weaker.

Read more from NIBIO – Norwegian Institute of Bioeconomy Research