The antimicrobial properties of silver have been known for centuries. While it is still a mystery as to exactly how silver kills bacteria, University of Arkansas researchers have taken a step toward better understanding the process by looking at dynamics of proteins in live bacteria at the molecular level.

Traditionally, the antimicrobial effects of silver have been measured through bioassays, which compare the effect of a substance on a test organism against a standard, untreated preparation. While these methods are effective, they typically produce only snapshots in time, said Yong Wang, assistant professor of physics and an author of the study, published in the journal Applied and Environmental Microbiology.

Instead, Wang and his colleagues used an advanced imaging technique, called single-particle-tracking photoactivated localization microscopy, to watch and track a particular protein found in E. coli bacteria over time. Researchers were surprised to find that silver ions actually sped up the dynamics of the protein, opposite of what they thought would happen. “It is known that silver ions can suppress and kill bacteria; we thus expected that everything slowed down in the bacteria when treated with silver. But, surprisingly, we found that the dynamics of this protein became faster.”

The researchers observed that silver ions were causing paired strands of DNA in the bacteria to separate, and the binding between the protein and the DNA to weaken. “Then the faster dynamics of the proteins caused by silver can be understood,” said Wang. “When the protein is bound to the DNA, it moves slowly together with the DNA, which is a huge molecule in the bacteria. In contrast, when treated with silver, the proteins fall off from the DNA, moving by themselves and thus faster.”

Read more at University of Arkansas